PhD researcher


Reverse Osmosis (RO) is the most important water desalination technology worldwide. RO makes use of a pressure difference to push water through an extremely thin membrane (200 nm thick) to produce almost salt-free water. RO can be applied both for seawater and for water sources with lower salinity (ground water, surface water).
To develop optimal RO-processes, essential is the availability of accurate theoretical models to describe energy consumption and the composition of the product water. These models help in understanding the process better, the development of better membranes and module designs, but more likely, help to design a better process layout for a given objective (to design a water treatment plant that must treat x m3 of water per day). Accurate models help to predict the exact retention of key undesired components, such as boron or ammonia.
However, precise models based on a detailed physical and chemical description of the processes that take place in and around the membrane are not yet developed to make design possible. Recently, a start was made to develop such a model for a simplified geometry [1]. Here all transport processes in the membrane are well described, including the mutual interactions between all ions and water and membrane. Essential is that the model includes all ongoing chemical acid-base reactions between all species, e.g., how water splits in hydronium ions and hydroxyl ions, and how these react, for instance with carbonate ions to form carbonic acid/bicarbonate. Other chemical reactions involve ammonium, boron and sulfate. The developed model [1] gave a very precise description of experimental observations, and this model is the basis of further work in this project.

Research challenge
The challenge is to extend the existing RO model to the level of describing a full module and small RO plant, and implement the model in relevant software platforms such as Python. Using RO equipment available at Wetsus or with one of our partners, precise experiments are done to validate and upgrade the model. Both artificial seawater and various sources of groundwater and surface water are considered in the project. Using the model, optimal RO operational conditions can be determined. The project aims to produce scientific tools and knowledge, resulting in scientific publications. The modeling framework tries to capture as much as possible known physical and chemical information of the membrane, but not always this information is available of commercially available membranes, such as micropore size (distribution) and ion mobilities in the membrane. Therefore, combination of experimental data with model predictions helps to establish “effective” values of membrane parameters that will be used in the final model.


We are looking for a candidate with an MSc degree in the field of physics, chemical or mechanical engineering, or an equivalent degree. A background in environmental science or water technology is not required. The candidate must have an affinity with 1. doing process-related experiments and the analysis of data, and 2. making and evaluating computer models to study the RO process.

We are looking for a candidate, who
· is interested in doing scientific research, with a strong wish to figure out in detail how things work;
· can communicate their results in writing, presentations and discussions;
· has a strong interest in theoretical modeling of the RO process;
· is precise and dedicated to make sure experiments and calculations are as good as needed;
· is inventive in figuring out new ways to study a system by theory or experiments;
· likes to write.


Salary and working conditions are according to the collective labor agreement of the Cooperative Association of Dutch Universities (VSNU) for PhD students. Per 1-2-2019 the salary for a PhD student as determined by the collective labor agreement are (in Euros before tax per year): €32.550 (year 1), €37.926 (year 2), €39.690(year 3) and €41.608 (year 4). PhD students are appointed by one of the cooperating universities but research is conducted at the Wetsus laboratory in Leeuwarden.

Company profile

You will be working in a new, innovative, dynamic, idea driven and future-directed research institute. You will be able to put your mark on the development of new water technology. In our Centre of excellence we strive for high level research projects. You will work in close collaboration with our industrial partners and also with research groups of various universities. The unique characteristic of Wetsus is the multidisciplinarity of the program.


For more information contact

Please do NOT send your CV directly to this email address. Only complete applications sent via the website will be evaluated (How to Apply).





Publication date


Publication end date


Vacature delen via:
Meer details
Our sponsors
Hyphen Projects uses cookies to remember certain preferences and align jobs interests.